

01 - 05.1

01.06.GB

LDM valves with Johnson Controls actuators

Ky coefficient calculation

Calculation itself is carried out with respect to conditions of regulating circuit and operating medium according to equations mentioned below. Control valve must be designed to be able to regulate maximal flow quantity at given operating conditions. At the same time it is necessary to check whether minimal flow quantity can be even regulated or not.

Condition is the following ratio $r > Kvs / Kv_{min}$

Because of eventual minus tolerance 10% of Kv_{100} against Kvs and requirement for possible regulation within range of maximal flow (decrement and increase of flow), producer recommends to select Kvs value higher than maximal operating Kv value:

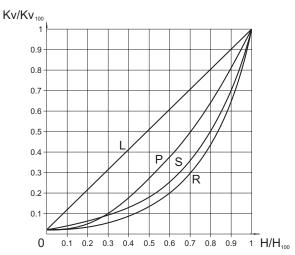
 $Kvs = 1.1 \div 1.3 Kv$

It is necessary to take into account to which extent Q_{max}involve "precautionary additions" that could result in valve oversizing.

Relations of Kv calculation

		Pressure drop $p_2 > p_1/2$	Pressure drop $\Delta p \ge p_1/2$
		$\Delta p < p_1/2$	$p_2 \leq p_1/2$
	Liquid	$\frac{Q}{100}$ 1	$\frac{\rho_1}{\Delta p}$
Kv =	Gas	$\frac{Q_{_{n}}}{5141}\sqrt{\frac{\rho_{_{n}}.T_{_{1}}}{\Delta p.p_{_{2}}}}$	$\frac{2.Q_{_n}}{5141.p_{_1}}\sqrt{\rho_{_n}.T_{_1}}$
rv –	Superh. steam	$\frac{Q_{m}}{100}\sqrt{\frac{v_{2}}{\Delta p}}$	$\frac{Q_{m}}{100}\sqrt{\frac{2v}{p_{1}}}$
	Sat. steam	$\frac{Q_m}{100}\sqrt{\frac{v_2.x}{\Delta p}}$	$\frac{Q_m}{100}\sqrt{\frac{2v.x}{p_1}}$

Above critical flow of vapours and gases


When pressure ratio is above critical ($p_{_2}/p_{_1}$ < 0.54), speed of flow reaches acoustic velocity at the narrowest section. This event can cause higher level of noisiness. Then it is convenient to use a throttling system ensuring low noisiness (multi-step pressure reduction, damping orifice plate at outlet).

Flow characteristic selection in regard of valve stroke

To make right selection of valve flow characteristic, it is suitable to carry out checking of what stroke values will be reached in different operation states. We recommend to carry out such checking at least for minimal, nominal and maximal flow rates. The principle for flow characteristic selection is to avoid, if possible, $5 \div 10\%$ of the beginning and end of the valve stroke range.

To calculate valve stroke at different operating conditions with different types of flow characteristics is possible with the advantage of using LDM's calculation programme VALVES. The programme serves for complete design of valve from Kv calculation to specification of a concrete valve with its actuator.

Valve flow characteristics

L - linear characteristic

 $Kv/Kv_{100} = 0.0183 + 0.9817 \cdot (H/H_{100})$

R - equal-percentage characteristic (4-percentage) $Kv/Kv_{100} = 0.0183 \cdot e^{(4-HH_{100})}$

P - parabolic characteristic

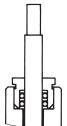
 $Kv/Kv_{100} = 0.0183 + 0.9817 \cdot (H/H_{100})^2$

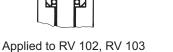
S - LDM spline® characteristic

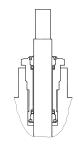
 $\dot{\text{Kv/Kv}}_{100}$ = 0.0183 + 0.269 . (H/H₁₀₀) - 0.380 . (H/H₁₀₀)² + 1.096 . (H/H₁₀₀)³ - 0.194 . (H/H₁₀₀)⁴ - 0.265 . (H/H₁₀₀)⁵ + 0.443 . (H/H₁₀₀)⁶

Dimensions and units

Marking	Unit	Name of dimension
Kv	m³.h⁻¹	Flow coefficient under condition of units of flow
KV ₁₀₀	m³.h ⁻¹	Flow coefficient at nominal stroke
KV _{min}	m³.h⁻¹	Flow coefficient at minimal flow rate
Kvs	m³.h⁻¹	Valve nominal flow coefficient
Q	m³.h¹	Flow rate in operating conditions (T ₁ , p ₁)
Q _n	Nm³.h⁻¹	Flow rate in normal conditions (0°C, 0.101 Mpa)
Q_{m}	kg.h⁻¹	Flow rate in operating conditions (T ₁ , p ₁)
p ₁	MPa	Upstream absolute pressure
$\overline{p_{\scriptscriptstyle 2}}$	MPa	Downstream absolute pressure
p _s	MPa	Absolute pressure of saturated steam at given temperature (T,)
Δp	MPa	Valve differential pressure ($\Delta p = p_1 - p_2$)
ρ_1	kg.m⁻³	Process medium density in operating conditions (T ₁ , p ₁)
ρ_{n}	kg.Nm ⁻³	Gas density in normal conditions (0°C, 0.101 Mpa)
V_2	m³.kg ⁻¹	Specific volume of steam when temperature T ₁ and pressure p ₂
V	m³.kg ⁻¹	Specific volume of steam when temperature T, and pressure p,/2
T ₁	K	Absolute temperature at valve inlet (T ₁ = 273 + t ₁)
x	1	Proportionate weight volume of saturated steam in wet steam
r	1	Rangeability

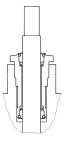



Principles for plug type selection

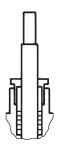

V-ported plugs should not to be used in above - critical differential pressures with inlet pressure $p_i \ge 0.4$ MPa and for regulation of saturated steam. In these cases we recommend to use a perforated plug. The perforated plug should be also used always when cavitation may occur due to a high differential pressure value or valve ports erosion caused by high speed of process medium flow. If the parabolic plug is used (because of small Kvs) for pressures $p_i \ge 1,6$ MPa and above - critical differential pressures, it is necessary to close both plug and seat with a hard metal overlay, i.e. stellited trim.

Packing - O -ring EPDM

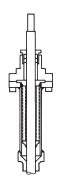
Packing is designed for non-aggressive media with temperature from 0° to 140°C. Packing excels with its reliability and long time tightness. It has ability of sealing even if the valve stem is a bit damaged. Low frictional forces enables valve to be actuated with a low-linear-force actuator. Service life of sealing rings depends on operating conditions and it is more than 400 000 cycles on average.



Applied to RV 2xx


Packing - DRSpack® (PTFE)

DRSpack (Direct Radial Sealing Pack) is a packing with high tightness at both low and high operating pressure values. It is the most used type of packing suitable for temperatures ranging from 0° to 260°C. The pH range is from 0 to 14. The packing enables using of actuators with low linear force. The design enables an easy change of the whole packing. The average service life of DRSpack® is more than 500 000 cycles.


Packing - Graphite

This type of packing can be used for media with temperature up to 550 °C and pH range: 0 to 14. Packing can be "sealed up" either by screwing the packing screw in or adding another sealing ring. In regard of intensive frictional forces, graphite packing is suitable for actuators with a sufficient linear force.

Packing - Bellows

Bellows packing is suitable for low and high temperatures ranging from -50° to 550°C. Bellows ensures absolute tightness to environment. Packing is equipped with safety PTFE packing as standard to prevent medium from leaking in case of damage to bellows. Intensive linear forces are not required.

Application of bellows packing

Bellows packing is suitable for applications with very aggressive, toxic or other dangerous media that require absolute tightness to environment. In such case, it is necessary to check compatibility of used body material as well as the valve inner parts material with process medium. It is recommended to use bellows with safety packing preventing medium from leaking in case of damage to bellows when there is an extremely dangerous process medium used.

Bellows is also a great solution to use of process medium either with temperature below zero when ice accretions cause premature damage to packing or with high temperatures when bellows ensures medium cooling.

Rangeability

Rangeability is the ratio of the biggest value of flow coefficient to the smallest value. In fact it is the ratio (under the same conditions) of highest regulated flow rate value to its lowest value. The lowest or minimal regulated flow rate is always higher than 0.

Service life of bellows packing

Bellows material	Temperature														
	200°C	300°C	400°C	500°C	550°C										
1.4541	100 000	40 000	28 000	7 000	not applicable										
1.4571	90 000	34 000	22 000	13 000	8 000										

Values specified in the table above show minimal guaranteed number of cycles with the valve full stroke when the bellows is fully lenghtened and pressed. In regulation, when the valve moves only in a portion of the stroke range at the inner centre of the valve, the service life of the bellows is many times longer then depending on concrete operating conditions.

Procedure for designing of two-way valve

Given: medium water, 155°C, static pressure at piping spot 1000 kPa (10 bar), $\Delta p_{\text{DISP}} = 80$ kPa (0,8 bar), $\Delta p_{\text{PIPELINE}} = 15$ kPa (0,15 bar), $\Delta p_{\text{APPLIANCE}} = 25$ kPa (0,25 bar), nominal flow rate $Q_{\text{NOM}} = 8$ m³.h¹, minimal flow rate $Q_{\text{MIN}} = 1,3$ m³.h¹.

$$\begin{array}{l} \Delta p_{\text{DISP}} = \Delta p_{\text{VALVE}} + \Delta p_{\text{APPLIANCE}} + \Delta p_{\text{PIPELINE}} \\ \Delta p_{\text{VALVE}} = \Delta p_{\text{DISP}} - \Delta p_{\text{APPLIANCE}} - \Delta p_{\text{PIPELINE}} = 80 - 25 - 15 = 40 \text{ kPa (0,4 bar)} \end{array}$$

$$Kv = \frac{Q_{_{NOM}}}{\sqrt{\Delta p_{_{VALVE}}}} = \frac{8}{\sqrt{0,4}} = 12,7 \text{ m}^3.\text{h}^{.1}$$

Precautionary additions for process tolerances (provided that flow rate Q was not oversized):

$$Kvs = (1,1 \text{ to } 1,3)$$
. $Kv = (1,1 \text{ to } 1,3)$. $12,7 = 14 \text{ to } 16,5 \text{ m}^3.\text{h}^{-1}$

Now we choose the nearest Kvs value from those available in our catalogue, i.e. Kvs = 16 m³.h¹. This value corresponds to nominal size of DN 32. Then if we choose flanged execution PN 16, body made of spheroidal cast iron, with metal - PTFE seat sealing, packing PTFE and equal-percentage flow characteristic, we will get the following specification No.:

RV 21x XXX 1423 R1 16/220-32

x in the valve code above (21x) stands for valve execution (direct or reverse) and depends on type of used actuator which should be chosen in respect to demands of regulating system (type, producer, voltage, type of control, necessary torque or linear force, etc.)

Determination of real pressure drop value of a chosen valve at fully open

$$\Delta p_{\text{VENTIL H100}} = \left(\frac{Q_{\text{NOM}}}{\text{Kys}}\right)^2 = \left(\frac{8}{16}\right)^2 = 0,25 \text{ bar (25 kPa)}$$

The control valve's real pressure drop calculated this way shall be taken into account in a hydraulic calculation of regulating circuit.

Determination of valve's real authority

$$a = \frac{\Delta p_{\text{VALVE H100}}}{\Delta p_{\text{VALVE H0}}} = \frac{12,3}{40} = 0,31$$

Value <u>a</u> should be at least equal to 0,3. A chosen valve checking is then satisfactory.

Caution: the valve's authority calculation should be related to a valve pressure difference in its closed position i.e. disposition pressure value in a branch Δp_{AVAIL} when flow rate is zero, not to a pressure value of a pump Δp_{PUMP} , because, due to pipeline circuit pressure drops up to the spot where the regulating branch is connected, the following equation applies: $\Delta p_{\text{AVAIL}} < \Delta p_{\text{PUMP}}$. In such cases we consider for simplicity the following: $\Delta p_{\text{AVAIL}+100} = \Delta p_{\text{AVAILH+100}} = \Delta p_{\text{DISP}}$.

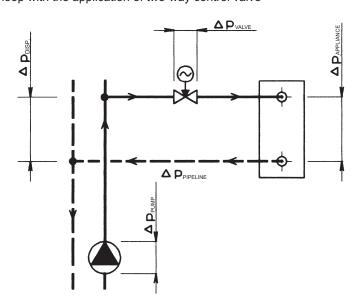
Checking of rangeability

We carry out the same checking for minimal flow rate $Q_{\text{MIN}} = 1,3 \text{ m}^3.\text{h}^{-1}$. The following differential pressure values correspond to the min. flow rate: $\Delta p_{\text{PIPELINE OMIN}} = 0,40 \text{ kPa}, \ \Delta p_{\text{APPLIANCE OMIN}} = 0,66 \text{ kPa}. \ \Delta p_{\text{VALVE GMIN}} = 80 - 0,4 - 0,66 = 78,94 = 79 \text{ kPa}.$

$$Kv_{MIN} = \frac{Q_{MIN}}{\sqrt{\Delta p_{VALVE OMIN}}} = \frac{1,3}{\sqrt{0,79}} = 1,46 \text{ m}^3.\text{h}^{-1}$$

Necessary rangeability value

$$r = \frac{Kvs}{Kv_{MIN}} = \frac{16}{1,46} = 11$$


shall be lower than mentioned rangeability value of r = 50. Checking is then satisfactory.

Selection of suitable flow characteristic

On the basis of calculated values $Kv_{\text{\tiny NOM}}$ and $Kv_{\text{\tiny MIN}}$, it is possible to read the appropriate stroke values from the graph for individual types of flow characteristics of the valve and choose the most suitable one accordingly. Here we have $h_{\text{\tiny NOM}} = 96\%$ $h_{\text{\tiny MIN}} = 41\%$ for equal-percentage characteristic. In that case, LDMspline® flow characteristic is more suitable (93% and 30% of the stroke). It corresponds to the following specification code:

RV 21x XXX 1423 S1 16/220-32

Scheme of typical regulation loop with the application of two-way control valve

Remark: More detailed information on calculation and design of LDM control valves is mentioned in calculation instructions No. 01-12.0. Equations mentiened above apply in a similified way to water. To reach optimum results, we recommend to use original calculation programme VALVES which is available on request free of charge.

Procedure for designing of three-way valve

Given: medium water, 90°C, static pressure at piping spot 1000 kPa(10 bar), $\Delta p_{\text{PUMP2}} = 40$ kPa (0,4 bar), $\Delta p_{\text{PIPELINE}} = 10$ kPa (0,1bar), $\Delta p_{\text{APPLIANCE}} = 20$ kPa (0,2 bar), flow rate $Q_{\text{NOM}} = 7$ m³ b⁻¹

$$\begin{split} &\Delta p_{\text{PUMP2}} = \Delta p_{\text{VALVE}} + \Delta p_{\text{APPLIANCE}} + \Delta p_{\text{PIPELINE}} \\ &\Delta p_{\text{VALVE}} = \Delta p_{\text{PUMP2}} - \Delta p_{\text{APPLIANCE}} - \Delta p_{\text{PIPELINE}} = 40\text{-}20\text{-}10 = 10 \text{ kPa (0,1bar)} \end{split}$$

$$Kv = \frac{Q_{\text{NOM}}}{\sqrt{\Delta p_{\text{VALVE}}}} = \frac{7}{\sqrt{0,1}} = 22,1 \text{ m}^3.\text{h}^{-1}$$

Precautionary additions for process tolerances (provided that flow rate Q was not oversized):

$$Kvs = (1,1 \text{ to } 1,3)$$
. $Kv = (1,1 \text{ to } 1,3)$. $22,1 = 24,3 \text{ to } 28,7 \text{ m}^3.h^{-1}$

Now we choose the nearest Kvs value from those available in our catalogue, i.e. Kvs = $25 \text{ m}^3.\text{h}^{-1}$. This value corresponds to nominal size of DN 40. Then if we choose flanged execution PN 16, body made of spheroidal cast iron, with metal - PTFE seat sealing, packing PTFE and equal-percentage flow characteristic, we will get the following specification No.:

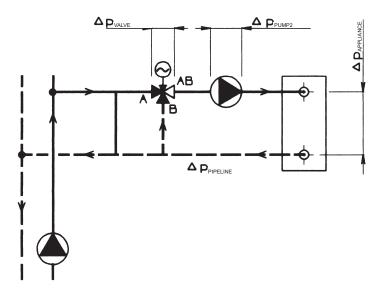
RV 21x XXX 1413 L1 16/140-40

x in the valve code above (21x) stands for valve execution (direct or reverse) and depends on type of used actuator which should be chosen in respect to demands of regulating system (type, producer, voltage, type of control, necessary torque or linear force, etc.)

Determination of real pressure drop value of a chosen valve at fully open

$$\Delta p_{VALVE H100} = \left(\frac{Q_{NOM}}{Kvs}\right)^2 = \left(\frac{7}{25}\right)^2 = 0.08 \text{ bar (8 kPa)}$$

The control valve's real pressure drop calculated this way shall be taken into account in a hydraulic calculation of regulating circuit.


Caution: To ensure reliable function of three-way valves, the most important condition is to keep minimum available pressure difference between A and B ports. Three-way valves are capable to manage even high pressure difference between A and B ports but valve's flow characteristic deformates then and so regulation properties deteriorate. So if in doubt about pressure difference value between those two ports (e.g. when three-way valve is piped directly into primary side without pressure separation), we recommend to use a two-way valve in combination with a primary-secondary side short cut to ensure a reliable regulation. The authority of A-AB way of three-way valve is, providing a constant flow rate in appliance circuit, the following:

$$a = \frac{\Delta p_{\text{VALVE H100}}}{\Delta p_{\text{VALVE H0}}} = \frac{8}{8} = 1 \ ,$$

which means that the behaviour of flow in A-AB way corresponds to ideal flow curve of the valve. In that case there are Kvs values in both ports the same with linear characteristic i.e. the total flow is nearly constant.

A combination of equal-percentage characteristic in A port and linear characteristic in B port shall be selected in those cases when loading of A port with differential pressure against B port cannot be avoided or when the primary side parametres are too high.

Scheme of a typical regulation loop with the application of a three-way mixing control valve

Remark: More detailed information on calculation and design of LDM control valves is mentioned in calculation instructions No. 01-12.0. Equations mentiened above apply in a simlified way to water. To reach optimum results, we recommend to use original calculation programme VALVES which is available on request free of charge.

RV 102 C RV 103 C

Control valves DN 15 - 50. PN 16 with Johnson Controls actuators

Description

Control valves series RV 102 are two-way or three-way valves with internal threaded connection. Valve body is made of brass. Control valves series RV 103 are two-way or three-way valves with flanged connection. Valve body is made of grey cast iron. Valves are optionally manufactured in the following executions:

- three-way control valve
- two-way, reverse, control valve

-two-way, angular, control valve Valves RV 102 C and RV 103 C are especially designed for Johnson Controls actuators.

Application

Valves are designed for application in heating, ventilation or air conditioning systems for maximal temperature 150°C. Max. permissible working pressures according to ČSN 13 0010, see page 38 of this catalogue.

Process media

Valve series RV 102 and RV 103 are designed to regulate the flow and pressure of liquids, gases and vapours without abrasive particles e.g. water, low-pressure steam (it applies to RV 102 only), air and other media compatible with material of the valve inner parts. Medium acidity and alkalinity should not exceed range of pH 4.5 to 9.5.

To ensure reliable regulation, producer recommends to pipe a strainer in front of the valve into pipeline.

Installation

The valve is to be piped the way so that the direction of medium flow will coincide with the arrows on the body (inlet ports A, Band outlet port AB).

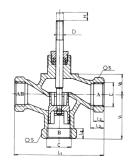
In flow-diverting valves, the process medium flow is reversed (inlet port AB and outlet ports A, B).

Valve can be installed in any position except position when the actuator is under the valve body.

Technical data

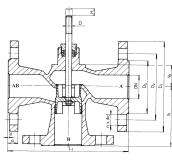
Series	RV 102	RV 103									
Type of valve	Three-way o	control valve									
	Two-way, revers	se, control valve									
Nominal size range	DN 1:	DN 15 - 50									
Nominal pressure	PN	1 16									
Body material	Brass 42 3135	Grey cast iron EN-JL 1040									
Plug material	Brass 4	42 3234									
Operating temperature range	-5 to	-5 to 150°C									
Face to face dimensions	Acc. to DIN 3202 - M4	Acc. to DIN 3202 - F1									
Connection	Internal threaded coupling	Flange type B1 (raised-faced)									
		Acc. to ČSN-EN 1092-1 (4/2002)									
Type of plug	V-port	ed plug									
Flow characteristic	Linear; equal-percentage (a	pplicable to basic Kvs values)									
Kvs values	0.6 to 4	10 m³/hour									
Leakage rate	Class III. acc. to ČSN 1349 (5/2001)	(<0.05 % of Kvs) value in straight way									
Rangeability r	50	50 : 1									
Packing	O - rin	O - ring EPDM									

Kvs values and differential pressures


 Δ p_{max} value is the valve maximal differential pressure when reliable opening and closing can be guaranteed. Because of seat and plug service life, it is recommended so that

permanent differential pressure would not exceed 0.6 MPa for valves RV 102 and 0.4 Mpa for valves RV 103.

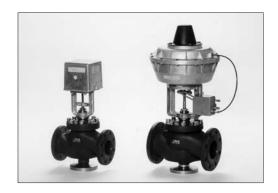
For furthe	er informa	ation on a	ctuating,	Actuatin	g (actuato	or)	VA-77xx-100x	VA-7810-xxx-11
see actua	ators' cat	alogue sh	eets	Marking	in valve s	spec. No.	ECM	ECN
				Linear fo	rce		500 N ± 20%	1000 N ± 20%
			K	vs [m³/ho	ur]		Δp_{max}	$\Delta p_{\scriptscriptstyle \sf max}$
DN	Н	1	2	3	4	5	MPa	MPa
15		4.0	2.5	1.6	1.0	0.6	1.60	1.60
20	10	6.3	4.0	2.5			1.07	1.60
25		10.0	6.3	4.0			0.69	1.18
32		16.0	10.0	6.3			0.42	0.73
40	16	25.0	16.0	10.0			0.27	0.47
50		40.0 25.0 16.0					0.15	0.28


Dimensions and weights for the type RV 102

DN	С	L,	L ₂	L ₃	V,	٧,	S	Н	D	m
		mm	mm	mm	mm	mm	mm	mm	mm	kg
15	G 1/2	85	9	12	43	25	27			0.55
20	G 3/4	95	11	14	48	25	32	10	ш	0.65
25	G 1	105	12	16	53	25	41			0.80
32	G 1 1/4	120	14	18	66	35	50		1/4" (1.40
40	G 1 1/2	130	16	20	70	35	58	16	7	2.00
50	G 2	150	18	22	80	42	70			2.95

Dimensions and weights for the type RV 103

DN	D ₁	D ₂	D ₃	n x d	а	f	L ₁	V ₁	V ₂	Н	D	m
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
15	95	65	45	4x14	16		130	65	25			3.2
20	105	75	58			_	150	75	25	10	ш	4.3
25	115	85	68		18	2	160	80	25		NN H	5.5
32	140	100	78		10		180	90	35		1/4"	7.7
40	150	110	88	4x18			200	100	35	16	7	8.5
50	165	125	102		20	3	230	115	42			11.9



Valve complete specification No. for ordering

			XX	XXX	XXX	ХХ	ХХ	- XX	/ XXX	- XX
Type of valve	Control valve		RV	XXX	XXX	X X	X X	7//	7 7000	1
2. Series	Valves made of brass			1 0 2						+-
	Valves made of grey cast iron			1 0 3						+-
3. Actuating	Electric actuators				Е					H =
	Electric actuators VA-77xx-100x				E C M					+-
	Electric actuators VA-7810-xxx-11				ECN					
								+	_	+-
4. Design	Straight, two-way, threaded valves	Applicable				1				Ш_
	Angle, two-way, threaded valves	to RV 102				2				
	Mixing (diverting), three-way, threaded valves	10 100 102				3				
	Straight, two-way, flanged valves	Annlinable				4				
	Angle, two-way, flanged valves	Applicable to RV 103				5				
	Mixing (diverting), three-way, flanged valves	10 100				6				
Body material	Grey cast iron					3				
	Brass					5				
Flow characteristic	Linear						1			
1) Applicable tobasic Kvs values only	Equal-percentage 1)						2			
7. Nominal Kvs value	Column No. acc. to Kvs values table						Х			
Nominal pressure PN	PN 16							16		
9. Max. operating temperature° C									150	
10. Nominal size	DN									XX

Ordering example: Three-way control valve DN 25, PN 16 with electric actuator VA 7740-1003, body material: brass, connection: internal thread G 1, linear flow characteristic, $Kvs = 10 \text{ m}^3$ /hour is specified as follows: **RV 102 ECM 3511 16/140-25.**

200 line

RV 2x0 C

Control valve DN 50 - 150, PN 16 and 40 with Johnson Controls actuators

Description

Control valves RV 210, RV 220 and RV 230 (further only RV 2x0) are single-seated valves designed for regulation and shut-off of process medium flow. In regard of used actuators, the valves are suitable for regulation at low and medium high differential pressures. Flow characteristics, Kvs values and leakage rates correspond to international standards.

Valves RV 2x0 C are especially designed for electromechanic actuators of Johnson Controls.

Application

These valves have a wide range of application in heating, ventilation, power generation and chemical processing industries. Valve body can be optionally made of spheroidal cast iron, cast steel and austenitic stainless steel according to operating conditions.

The materials selected correspond to recommendations stipulated by CSN-EN 1503-1 (1/2002) (steels) and CSN-EN 1503-3 (1/2002) (cast). The maximum operating pressures for different materials are specified in the table on page 38 of this catalogue.

Process media

Valves series RV 2x0 are designed for regulation and shut-off of flow and pressure of liquids, gases and vapours without abrasive particles e.g. water, steam, air and other media compatible with material of the valve inner parts. The usage of the valve made of spheroidal cast iron (RV210) for steam is limited by the following parametres. The steam must be superheated (its dryness at valve outlet $x_i \ge 0.98$) and inlet pressure $p_i \le 0.4$ MPa when differential pressure is of above-critical value, and $p_i \le 1.6$ MPa when differential pressure is of under-critical value. In case these two conditions are not kept, it is necessary to use the value made of cast steel (RV 220). To ensure a reliable regulation, the producers recommends to pipe a strainer in front of the valve into pipeline or ensure in any other way that process medium does not contain abrasive particles or impurities.

Installation

The valve is to be piped the way so that the direction of medium flow will coincide with the arrows on the body.

The valve can be installed in any position except position when the actuator is under the valve body. When medium temperature exceeds 150°C, it is necessary to protect the actuator against glowing heat from the pipeline e.g. by the means of proper insulating of the pipeline and valve or by tilting the valve away from the heat radiation.

Technical data

Series	RV 210	RV 220	RV 230								
Type of valve	Two	o-way, single-seated, control va	lve								
Nominal size range		DN 15 to 150									
Nominal pressure		PN 16, PN 40									
Body material	Spheroidal cast iron	Cast steel	Stainless steel								
	EN-JS 1025	1.0619 (GP240GH)	1.4581								
	(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)								
Seat material: DN 15 - 50	1.4028 / 17 023.6										
DIN W.Nr./ČSN DN 65	1.4027 / 42 2906.5										
Plug material: DN 15 - 65	1.4021 / 17 027.6	1.4021 / 17 027.6	1.4571 / 17 347.4								
DIN W.Nr./ČSN	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4								
Operating temperature range	-20 to 300°C	-20 to 500°C	-20 to 400°C								
Face to face dimensions	Line 1 acc. to ČSN-EN 558-1 (3/1997)										
Flanges	Acc. to ČSN-EN 1092-1 (4/2002)										
Flange face	Type B1 (raised-faced) or Type F (female) acc. to ČS	N-EN 1092-1 (4/2002)								
Type of plug		V-ported, parabolic, perforated									
Flow characteristic	Linear, e	qual-percentage, LDMspline® , _l	parabolic								
Kvs value		0.4 to 63 m ³ /hour									
Leakage rate	Class III. acc. to ČSN-EN 1349	(5/2001) (<0.1% Kvs) for c. valve	es with metal-metal seat sealing								
	Class IV. acc. to ČSN-EN 1349 (5/2001) (<0.01% Kvs) for c. valves with metal-PTFE seat sealing										
Rangeability r	50 : 1										
Packing	O - ring EPDM t _{max} =140°C, DRSpack® (PTFE) t _{max} =260°C, Exp. graphite, bellows t _{max} =500°C										

Remark: For low operating temperatures (-200 to +250°C), it is possible to supply the valve RV 231 with body material made of 1.4308 (cast stainless steel).

Kvs and differential pressure values with electromechanic actuators

 Δ p $_{\!\!_{max}}$ value is the valve max. differential pressure when open - close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that

differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

For further information on actuation, see actuator's cataloque sheets		Actuating (actuator)		RA 3xxx-722x	FA 22xx-751x FA 25xx-751x	RA 3xxx-732x	FA 33xx-741x
		Marking in	valve specifi	cation No	ECI	ECK	ECI	ECL
		Linear forc	е		1800 N	2300 N	3000 N	6000 N
			Kvs [m³/hou	r]	Δp_{max}	Δp_{max}	Δp_{max}	Δp_{max}
DN	Н	1	2	3	metal PTFE	metal PTFE	metal PTFE	metal PTFE
50	25	40.0	25.0	16.0	0.33 0.52	0.54 0.74		
65	25	63.0	40.0	25.0	0.16 0.32	0.29 0.45		
80		100.0	63.0	40.0			0.19 0.32	0.73 0.86
100	40	160.0	100.0	63.0			0.10 0.21	0.45 0.56
125	42	250.0	160.0	100.0			0.05 0.13	0.27 0.36
150		360.0	250.0	160.0			0.02 0.09	0.18 0.25

Kvs and differential pressure values with pneumatic actuators

 Δ p_{max} value is the valve max. differential pressure when open - close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that

differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

For furth	er	Pneum	atic actu	uator		PA-2000												
informati		Spec. N	lo. of ac	tuator	PA-2x	xx-3312	PA-2x	x-3327	PA-2xx	x-3712	PA-2xx	x-3727	PA-2xxx-3612		PA-2xx	x-3627		
on actua		Fail-saf	e action		direct		indirect		direct		indirect		direct		indi	rect		
cataloque		Spring range [bar		[bar]	0,2	- 0,5	0,7	- 1,0	0,2 - 0,5		0,7	- 1,0	0,2	- 0,5	0,7	- 1,0		
sheets		Spring setting [bar]		C),2	C	,7	0	,2	0	,7	C),2	0	,7			
Feeding pres				re [bar]	1	,6	1	,2	1	,6	1	,2	1	,6	1	,2		
		Mark in	valve s	pec. No		PCB												
		Linear f	orce		3300 N		2100 N		6600 N		4200 N		6600 N		420	00 N		
		Kvs [m³/hour]			Δp_{max}		Δ	P _{max}	Δ	P _{max}	Δ	P _{max}	Δ	P _{max}	Δι	O _{max}		
DN	Н	1	2	3	metal	PTFE	metal	PTFE	metal	PTFE	metal	PTFE	metal	PTFE	metal	PTFE		
50	25	40.0	25.0	16.0	0.97	1.16	0.46	0.65	2.37	2.57	1.35	1.54						
65	25	63.0	40.0	25.0	0.55	0.71	0.24	0.39	1.41	1.56	0.79	0.94						
80		100.0	63.0	40.0									0.84	0.97	0.41	0.54		
100	42	160.0	100.0	63.0									0.52	0.63	0.24	0.35		
125	42	250.0	160.0	100.0									0.32	0.41	0.14	0.22		
150		360.0 250.0 160.0											0.21	0.28	0.08	0.16		

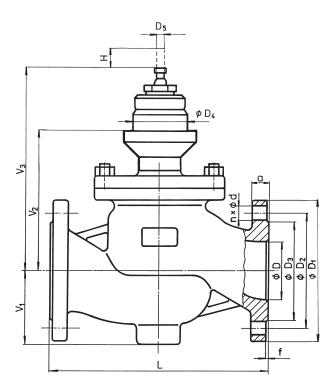
Bellows packing can be used with V-ported plug only.

Perforated plug available only with Kvs values in shadowed frames with the following restrictions:

Max. differential pressure Δ p for valves PN 16 must be 1.6 Mpa. metal - version with metal - metal seat sealing

PTFE - version with metal - PTFE seat sealing

Max. differential pressures specified in table apply to PTFE and O-ring packing. Δ p_{max} for bellows must be consulted with the producer. It applies to graphite packing as well especially when required Δ p value is close to max. values specified in table.


 Δp_{max} values are set for the most unfavourable pressure ratios on the valve PN 40, but in concrete cases the real Δp_{max} value can be higher than values specified in the table above.

⁻ Perforated plug with Kvs value acc. to column No. 2 available with linear or parabolic characteristic only.

Dimensions and weights for the type RV 2x0

	PN 16 PN 4							PN 40)		PN 16, PN 40													
DN	D ₁	D ₂	D ₃	d	n	D ₁	D ₂	D ₃	d	n	D	f	D ₄	D ₅	L	V ₁	V_{2}	$^{*}V_{_{2}}$	V_3	$^{\#}V_{_{3}}$	а	m ₁	m ₂	#m _v
	mm	mm	mm	mm		mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
50	165	125	102		4	165	125	102		4	50			40	230	85	150	338	216	404	20	14	21	4
65	185	145	122		41)	185	145	122	18		65			12	290	93	150	338	216	404	22	18	27	4
80	200	160	138	18		200	160	138			80	2	54		310	105	164	481	230	547	24	26	40	4.5
100	220	180	158		8	235	190	162	22	8	100		34	13.8	350	118	164	481	230	547	24	38	49	4.5
125	250	210	188		0	270	220	188	26		125			13.0	400	135	183	500	249	566	26	58	82	5
150	285	240	212	22		300	250	218	∠0		150				480	150	200	517	266	583	28	78	100	5

- with regard of the standard previously in force, there is an option to have the number of connection bolts as stipulated in ČSN-EN 1092-1
- bellows packing m₁ - for valves RV / HU 210 m₂ - for valves RV / HU 220 and RV / HU 230

200 line

RV / HU 2x1 C

Control valve and Fail-safe action valves DN 15 - 40, PN 16 and 40 with Johnson Controls actuators

Description

Control valves RV 211, RV 221 and RV 231 (further only RV 2x1) are single-seated valves designed for regulation and shut-off of process medium flow. In regard of used actuators, the valves are suitable for regulation at low and medium high differential pressures. Flow characteristics, Kvs values and leakage rates correspond to international standards.

Valves with a fail-safe action HU 2x1 have the same design as RV 2x1 with addition of increased seat sealing. Valves are equipped with fail-safe action actuators (valve closes upon power failure).

Valves RV 2x1 C are especially designed for electromechanic actuators of Johnson Controls.

Application

These valves have a wide range of application in heating, ventilation, power generation and chemical processing industries. Valve body can be optionally made of spheroidal cast iron, cast steel and austenitic stainless steel according to operating conditions.

The materials selected correspond to recommendations stipulated by ČSN-EN 1503-1 (1/2002) (steels) and ČSN-EN 1503-3 (1/2002) (cast). The maximum operating pressures for different materials are specified in the table on page 38 of this catalogue.

Process media

Valves series RV / HU 2x1 C are designed for regulation and for regulation and shut-off of flow and pressure of liquids, gases and vapours without abrasive particles e.g. Water, steam, air and other media compatible with material of the valve inner parts. The application of valves made of spheroidal cast iron (RV 211) for steam is limited by the following parametres: Steam must be superheated (its dryness $x_{,}\!\ge 0,\!98)$ and inlet pressure $p_{,}\!\le 0,\!4$ MPa when differential pressure is above-critical or $p_{,}\!\le 1,\!6$ MPa when differential pressure is under-critical. In case these values are exceeded, it is necessary to use valve made of cast steel (RV 221). To ensure reliable regulation, producer recommends to pipe a strainer in front of the valve or ensure in any other way that medium will not contain abrasive particles or impurities.

Installation

The valve is to be piped the way so that the direction of medium flow will coincide with the arrows on the body.

The valve can be installed in any position except position when the actuator is under the valve body. When medium temperature exceeds 150°C, it is necessary to protect the actuator against glowing heat from the pipeline e.g. by the means of proper insulating of the pipeline and valve or by tilting the valve away from the heat radiation.

Technical data

Series	RV / HU 211	RV / HU 221	RV / HU 231
Type of valve	Single-s	seated, two-way control valve, re	everse
Nominal size range		DN 15 to 40	
Nominal pressure		PN 16, PN 40	
Body material	Spheroidal cast iron	Cast steel	Stainless steel
	EN-JS 1025	1.0619 (GP240GH)	1.4581
	(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)
Seat material :	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4
Plug material :	1.4021 / 17 027.6	1.4021 / 17 027.6	17 347.4
Operating temperature range	-20 to 300°C	-20 to 300°C	-20 to 300°C
Face to face dimensions	Lin	e 1 acc. to ČSN-EN 558-1 (3/19	997)
Flanges		Acc. to ČSN-EN 1092-1 (4/2002	
Flange face	Type B1 (raised-faced	d) or Type F (female) acc. to ČS	SN-EN 1092-1 (4/2002)
Type of plug	V-por	ted, parabolic,LDMspline®, perf	orated
Flow characteristic	Line	ear, equal-percentage in AB - B	way
Kvs value		0.4 to 25 m ³ /hour	
Leakage rate	Class III. acc. to ČSN-EN 1349	(5/2001) (<0.1% Kvs) for c. valve	es with metal-metal seat sealing
	Class IV. acc. to ČSN-EN 1349	(5/2001) (<0.01% Kvs) for c. valv	es with metal-PTFE seat sealing
Rangeability r		50 : 1	
Packing	O - ring EPDM t _{max} =150	0°C, DRSpack® (PTFE) t _{max} =150	0°C, Bellows t _{max} =180°C

Remark: For low operating temperatures (-200 to +250°C), it is possible to supply the valve RV / HU 231 with body material made of 1.4308 (cast stainless steel).

Kvs and differential pressure values with electromechanic actuators

 Δp_{max} value is the valve max. differential pressure when open--close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that permanent

differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

For furth	er inform	ation on		Actuatin	ıg (actua	tor)		VA-781	0-xxx-12	RA-3xx	x-712x	FA-10x	x-210x
actuating		ctuator´s		Marking	in valve	spec. No	0	E	CN	EC	CI	Н	CJ
cataloqu	e sneet			Linear fo	orce			1000 N	l ± 20%	100	0 N	700) N
				Kvs [m	³/hour]			Δ	P _{max}	∆ p	max	Δp) max
DN	Н	1	2	3	4	5	6	metal	PTFE	metal	PTFE	metal	PTFE
15			2.51)	1.61)	1.01)	0.61)	0.41)	4.00		4.00		4.00	
15		4.01)						3.40		4.00		2.82	
20				2.51)	1.61)	1.01)	0.61)	4.00		4.00		4.00	
20			4.01)					3.40		4.00		2.82	
20	13	6.31)						1.56		2.15		1.27	
25	13				2.51)	1.6 1)	1.01)	4.00		4.00		4.00	
25		10.0	6.32)	4.0 2)				0.88	1.29	1.24	1.65	0.69	1.11
32					4.01)			3.40		4.00		2.82	
32		16.0	10.0	6.3 ²⁾				0.45	0.77	0.67	0.99	0.34	0.66
40		25.0	16.0	10.0				0.23	0.49	0.38	0.63	0.16	0.42

Kvs and differential pressure values with pneumatic actuators

 Δp_{max} value is the valve max. differential pressure when open--close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that permanent differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

For furth	ner inform	ation on		Pneuma	tic actua	ator			MP	8000	
	g, see a	ctuator´s		Spec. N	o. of acti	uator		MP822	2Cxx20	MP832	2Exx20
cataloqu	ie sheet			Fail-safe	action			dir	ect	indi	irect
				Spring ra	ange		[bar]	0,2	- 0,5	0,6	- 0,9
				Spring s	etting		[bar]	0	,2	0	,6
				Feeding	pressure	Э	[bar]	1	,6	1	,1
				Mark in	valve spe	ec No			PO	CA	
				Linear fo	orce			176	80 N	96	0 N
				Kvs [m	¹³/hour]			Δ	P _{max}	Δ	P _{max}
DN	Н	1	2	3	4	5	6	metal	PTFE	metal	PTFE
15			2.51)	1.61)	1.01)	0.61)	0.41)	4.00		4.00	
15		4.01)						4.00		4.00	
20				2.51)	1.61)	1.01)	0.61)	4.00		4.00	
20			4.01)					4.00		4.00	
20	13	6.31)						4.00		2.03	
25	13				2.51)	1.6 1)	1.01)	4.00		4.00	
25		10.0	6.32)	4.0 2)				2.63	3.04	1.17	1.58
32					4.01)			4.00		4.00	
32		16.0	10.0	6.3 ²⁾				1.51	1.83	0.63	0.95
40		25.0	16.0	10.0				0.92	1.17	0.35	0.60

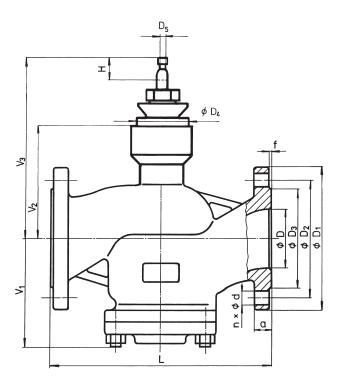
¹⁾ parabolic plug

- Kvs values 2.5 to 1.0 m³/hour available with linear characteristic only.
- Perforated plug with Kvs value acc. to column No. 2 available with linear or parabolic characteristic only.

metal - version with metal - metal seat sealing PTFE - version with metal - PTFE seat sealing

Bellows packing can be used with V-ported plug only.

Equal-percentage, LDMspline® and parabolic characteristic available on condition: Kvs value ≥ 1.0


Max. differential pressure Δ p for valves PN 16 must be 1.6 Mpa. Max. differential pressures specified in table apply to PTFE and O-ring packing. Δp_{max} for bellows must be consulted with the producer.

²⁾ V-ported plug with linear characteristic, parabolic plug with equal-percentage, LDMspline® and parabolic characteristic. Perforated plug available only with Kvs values in shadowed with the following restrictions: frames -

Dimension and weights for type RV / HU 2x1

			PN	16					PN	40								PN 1	16, P	N 40					
DN	D ₁	D ₂	D ₃	d	n	а	D₁	D ₂	D ₃	d	n	а	D	f	D_{4}	D ₅	L	V ₁	V ₂	$^{*}V_{2}$	V_3	$^{\#}V_{_{3}}$	m ₁	m ₂	#m _v
	mm	mm	mm	mm		mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
15	95	65	45			16	95	65	45			16	15				130	68	98		169		4.5	5.5	
20	105	75	58	14		18	105	75	58	14		18	20	2			150	68	98		169		5.5	6.5	
25	115	85	68		4	18	115	85	68		4	18	25	2	54	10	160	85	103	238	174	309	6.5	8	3.5
32	140	100	78	10		18	140	100	78	10		18	32				180	85	103	238	174	309	8	9.5	3.5
40	150	110	88	18		18	150	110	88	18		18	40	3			200	85	103	238	174	309	9	11	3.5

- for valve with bellows packing
 m_v weight to be added to weight of valve equipped with bellows packing
 m₁ for valves RV / HU 211
 m₂ for valves RV / HU 221 and RV / HU 231

200 line

RV 2x2 C

Control valves DN 50 - 150, PN 16 and 40 with Johnson Controls actuators

Description

Control valves RV 212, RV 222 and RV 232 (further only RV 2x2) are single-seated valves with pressure-balanced plug designed for regulation and shut-off of process medium flow. In regard of used actuators, the valves are suitable for regulation at high differential pressures with low-linear-force-actuators. Flow characteristics, Kvs values and leakage rates correspond to international standards.

Valves RV 2x2 are especially designed for electromechanic actuators of Johnson Controls.

Application

These valves have a wide range of application in heating, ventilation, power generation and chemical processing industries. Valve body can be optionally made of spheroidal cast iron, cast steel and austenitic stainless steel according to operating conditions.

The materials selected correspond to recommendations stipulated by CSN-EN 1503-1 (1/2002) (steels) and CSN-EN 1503-3 (1/2002) (cast). The maximum operating pressures for different materials are specified in the table on page 38 of this catalogue.

Process media

Valves series RV 2x2 are designed for regulation of flow and pressure of liquids, gases and vapours without abrasive particles e.g. water, steam, air and other media compatible with material of the valve inner parts. The usage of the valve made of spheroidal cast iron (RV 212) for steam is limited by the following parametres. The steam must be superheated (its dryness at valve outlet $x_{,}\!\ge 0,\!98$) and inlet pressure $p_{,}\!\le 0,\!4$ MPa when differential pressure is of above-critical value, and $p_{,}\!\le 1,\!6$ MPa when differential pressure is of under-critical value. In case these two conditions are not kept, it is necessary to use the value made of cast steel (RV 222). To ensure a reliable regulation, the producers recommends to pipe a strainer in front of the valve into pipeline or ensure in any other way that process medium does not contain abrasive particles or impurities.

Installation

The valve is to be piped the way so that the direction of medium flow will coincide with the arrows on the body.

The valve can be installed in any position except position when the actuator is under the valve body. When medium temperature exceeds 150°C, it is necessary to protect the actuator against glowing heat from the pipeline e.g. by the means of proper insulating of the pipeline and valve or by tilting the valve away from the heat radiation.

Technical data

Series	RV 212	RV 222	RV 232
Type of valve	Two-way, single-s	seated control valve with pressu	re-balanced plug
Nominal size range		DN 25 to 150	
Nominal pressure		PN 16, PN 40	
Body material	Spheroidal cast iron	Cast steel	Stainless steel
	EN-JS 1025	1.0619 (GP240GH)	1.4581
	(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)
Seat material : DN 15 - 50	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4
DIN W.Nr./ČSN DN 65	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4
Plug material: DN 15 - 65	1.4021 / 17 027.6	1.4021 / 17 027.6	1.4571 / 17 347.4
DIN W.Nr./ČSN	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4
Operating temperature range	-20 to 260°C	-20 to 260°C	-20 to 260°C
Face to face dimensions	Lin	e 1 acc. to ČSN-EN 558-1 (3/19	997)
Flanges	A	Acc. to ČSN-EN 1092-1 (4/2002	2)
Flange face	Type B1 (raised-faced	l) or Type F (female) acc. to ČS	N-EN 1092-1 (4/2002)
Type of plug		V-ported, parabolic, perforated	
Flow characteristic	Linear, e	equal-percentage, LDMspline®, p	parabolic
Kvs value		0.4 to 63 m³/hour	
Leakage rate	Class III. acc. to ČSN-EN 1349	(5/2001) (<0.1% Kvs) for c. valve	es with metal-metal seat sealing
	Class IV. acc. to ČSN-EN 1349	(5/2001) (<0.01% Kvs) for c. valv	es with metal-PTFE seat sealing
Rangeability r		50 : 1	
Packing	O - ring EPDM t _{max} =140°C, DF	RSpack® (PTFE) t _{max} =260°C, Exp	o. graphite, bellows t _{max} =500°C

Remark: For low operating temperatures (-200 to +250°C), it is possible to supply the valve RV 232 with body material made of 1.4308 (cast stainless steel).

Kvs and differential pressure values with electromechanic actuators

 Δ p_{max}value is the valve max. differential pressure when open-close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that permanent

differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

For m	tautin	ıg,	Actua (actua		RA-3xx	x-722x		(x-751x (x-751x	RA-3xx	xx-732x	FA-23x FA-26x		FA-33>	x-741x
see a			Mark		E	CI	E	CK	Е	CI	EC	CK	E	CL
uata .	SHECK	3	Lin. fo	orce	180	0 N	230	00 N	300	00 N	220	0 N	600	0 N
		Kvs	s [m³/h	our]	Δp) _{max}	Δμ	O _{max}	Δβ	O _{max}	Δp) _{max}	Δμ	O _{max}
DN	Н	1	2	3	metal	PTFE	metal	PTFE	metal	PTFE	metal	PTFE	metal	PTFE
50	25	32.0	25.0	16.0	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)						
65	25	50.0	40.0	25.0	4.00 (3.40)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)						
80		100.0	63.0	40.0					4.00 (4.00)	4.00 (4.00)	4.00 (3.30)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)
100 125	42	160.0	100.0	63.0					4.00 (3.90)	4.00 (4.00)	4.00 (2.30)	4.00 (3.90)	4.00 (4.00)	4.00 (4.00)
125	42	250.0	160.0	100.0					4.00 (2.70)	4.00 (4.00)	2.50 (1.40)	4.00 (3.00)	4.00 (4.00)	4.00 (4.00)
150		360.0	250.0	160.0					3.00 (1.90)	4.00 (3.60)	1.30 (0.80)	3.90 (2.50)	4.00 (4.00)	4.00 (4.00)

Kvs and differential pressure values with pneumatic actuators

 Δ p_{max}value is the valve max. differential pressure when open-close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that permanent

differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

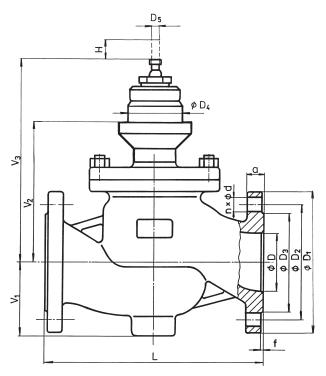
p		•		at pointai	10111	p			y.		
e info	Pneuma	tic actuato	or				PA:	2000			
uting,	Specif. N	lo. of actu	ator	PA-2xx	x-3312	PA-2xx	(x-3327	PA-2xx	x-3712	PA-2xx	x-3727
uators′	Actuator	function		fail to	open	fail to	close	fail to	open	fail to	close
eets	Spring ra	nge	[bar]	0,2	- 0,5	0,7	- 1,0	0,2	- 0,5	0,7	- 1,0
	Spring so	etting	[bar]	0	,2	0	,7	0	,2	0	,7
	Feeding	pressure	[bar]	1	,6	1	,2	1	,6	1	,2
	Mark in v	alve spec	c. No.				P	CB			
	Linear fo	rce		330	00 N	210	00 N	660	00 N	420	00 N
	K	(vs [m³/ho	ur]	Δι	O _{max}	Δβ	O _{max}	Δρ	O _{max}	Δρ	O _{max}
Н	1	2	3	metal	PTFE	metal	PTFE	metal	PTFE	metal	PTFE
25	32.0	25.0	16.0	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)
25	50.0	40.0	25.0	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)
	e info uting, uators´ eets	Pneuma Specif. N Actuator Spring ra Spring s Feeding Mark in v Linear fo K H 1 32.0	Pneumatic actuator Specif. No. of actuators Actuator function Spring range Spring setting Feeding pressure Mark in valve spece Linear force Kvs [m³/ho H 1 2 32.0 25.0	Pneumatic actuator Specif. No. of actuator Actuator function Spring range [bar] Spring setting [bar] Feeding pressure [bar] Mark in valve spec. No. Linear force Kvs [m³/hour] H 1 2 3 32.0 25.0 16.0	Pneumatic actuator Specif. No. of actuator Spring range Spring range Spring setting Spring setting setting Spring setting setting Spring setting setting Spring setting setting Spr	Pneumatic actuator Specif. No. of actuator Specif. No. of actuator Actuator function Spring range [bar] Spring setting [bar] Feeding pressure [bar] Mark in valve spec. No. Linear force Svs [m³/hour] A p _{max} H 1 2 3 metal PTFE 32.0 25.0 16.0 4.00 (4.00) 4.00 (4.00)	Pneumatic actuator Specif. No. of actua	Pneumatic actuator Specif. No. of actuator Specif. No. Spring range [bar] Spring setting	Pneumatic actuator	Pneumatic actuator PA 2000	Pneumatic actuator

For mor	e info	Pneuma	tic actuato	or				PA	2000			
on acta		Specif. N	lo. of actu	ıator		PA-2xx	x-3612			PA-2xx	x-3627	
see acti		Actuator	function			fail to	open			fail to	close	
data sh	eets	Spring ra	inge	[bar]		0,2	- 0,5			0,7	- 1,0	
		Spring se	0	[bar]		0	,2			0	,7	
			pressure	[bar]		1	,6			1	,2	
		Mark in v	alve spec	c. No.				P	СВ			
		Linear fo	rce			660	00 N			420	00 N	
		K	īvs [m³/ho	ur]		Δ	O _{max}			Δ	P _{max}	
DN	Н	1	2	3	me	etal		ΓFE	me	etal		TFE
80		100.0	63.0	40.0	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)
100	42	160.0	100.0	63.0	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)
125	42	250.0	160.0	100.0	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)
150		360.0	250.0	160.0	4.00	(4.00)	4.00	(4.00)	4.00	(3.60)	4.00	(4.00)

Perforated plug available only with Kvs values in shadowed frames _____ with the following restrictions:

metal - version with metal - metal seat sealing PTFE - version with metal - PTFE seat sealing

Max. diff. pressure Δp for valves PN 16 must be 1.6 MPa.


⁻ Perforated plug with Kvs value acc. to column No. 2 available with linear of parabolic flow characteristic only. Max. differential pressures specified in table apply to PTFE and O-ring packing. Δ $p_{\mbox{\tiny max}}$ for bellows must be consulted with the producer.

⁽xx) - Δ p values specified in parentheses apply to perforated plug

Dimensions and weight for the type RV 2x2

		F	PN 16	3			F	PN 40)							F	PN 10	3, PN	40					
DN	D ₁	D ₂	D ₃	d	n	D ₁	D_2	D ₃	d	n	D	f	D ₄	D ₅	L	V ₁	V ₂	$^{*}V_{_{2}}$	V_3	$^{\#}V_{_{3}}$	а	m ₁	m ₂	#m _v
	mm	mm	mm	mm		mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
50	165	125	102		4	165	125	102		4	50			40	230	85	150	338	216	404	20	14.5	21	4
65	185	145	122		4 1)	185	145	122	18		65			12	290	93	150	338	216	404	22	18.5	27	4
80	200	160	138	18		200	160	138			80	2	54		310	105	164	481	230	547	24	27.5	42	4.5
100	220	180	158		Q	235	190	162	22	8	100		34	13.8	350	118	164	481	230	547	24	39	50	4.5
125	250	210	188		O	270	220	188	26		125			13.6	400	135	183	500	249	566	26	60	84	5
150	285	240	212	22		300	250	218	20		150				480	150	200	517	266	583	28	81	103	5

- with regard of the standard previously in force, there is an option to have the number of connection bolts as stipulated in ČSN-EN 1092-1
- bellows packing
 m₁ - for valves RV/HU 212
 m₂ - for valves RV/HU 222 and RV/HU 232

200 line

RV 2x4 C

Control valves DN 15 - 150, PN 16 and 40 with Johnson Controls actuators

Description

Control valves RV 214, RV 224 and RV 234 (further only RV 2x4) are three-way valves with mixing or flow-diverting function. In regard of used actuators, the valves are suitable for regulation at low and medium high differential pressures in a diversity of operating conditions. Flow characteristics, Kvs values and leakage rates correspond to international standards.

Valves RV 2x4 are especially designed for electromechanic actuators of Johnson Controls.

Application

These valves have a wide range of application in heating, ventilation, power generation and chemical processing industries. Valve body can be optionally made of spheroidal cast iron, cast steel and austenitic stainless steel according to operating conditions.

The materials selected correspond to recommendations stipulated by ČSN-EN 1503-1 (1/2002) (steels) and ČSN-EN 1503-3 (1/2002) (cast). The maximum operating pressures for different materials are specified in the table on page 38 of this catalogue.

Process media

Valves series RV 2x4 are designed for regulation of flow and pressure of liquids, gases and vapours without abrasive particles e.g. water, steam, air and other media compatible with material of the valve inner parts. The usage of the valve made of spheroidal cast iron (RV 214) for steam is limited by the following parametres. The steam must be superheated (its dryness at valve outlet $x_i \!\!\ge\! 0,98)$ and inlet pressure $p_i \!\!\le\! 0,4$ MPa when differential pressure is of above-critical value, and $p_i \!\!\le\! 1,6$ MPa when differential pressure is of under-critical value. In case these two conditions are not kept, it is necessary to use the value made of cast steel (RV 224). To ensure a reliable regulation, the producers recommends to pipe a strainer in front of the valve into pipeline or ensure in any other way that process medium does not contain abrasive particles or impurities.

Installation

When the valve is used as mixing, it must be piped the way so that direction of process medium flow will coincide with the arrows on the body (inlet ports A, B and outlet port AB). When the valves is used as diverting, process medium flows through common valve port AB and split streams leave through valve ports A and B). The valve can be installed in any position except position when the actuator is under the valve body. When medium temperature exceeds 150°C, it is necessary to protect the actuator against glowing heat from the pipeline; e.g. by the means of proper insulating of the pipeline and valve or by tilting the valve away from the heat radiation.

Technical data

Series		RV 214	RV 224	RV 234
Type of valve			Three-way control valve	
Nominal size ran	ge		DN 15 to 150	
Nominal pressure	е		PN 16, PN 40	
Body material		Spheroidal cast iron	Cast steel	Stainless steel
		EN-JS 1025	1.0619 (GP240GH)	1.4581
		(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)
Seat material :	DN 15 - 50	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4
DIN W.Nr./ČSN	DN 65 - 150	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4
Plug material :	DN 15 - 65	1.4021 / 17 027.6	1.4021 / 17 027.6	1.4571 / 17 347.4
DIN W.Nr./ČSN	DN 80 - 150	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4
Operating tempe	rature range	-20 to 300°C	-20 to 500°C	-20 to 400°C
Face to face dim	ensions	Lin	e 1 acc. to ČSN-EN 558-1 (3/19	997)
Flanges		,	Acc. to ČSN-EN 1092-1 (4/2002	2)
Flange face		Type B1 (raised-faced	l) or Type F (female) acc. to ČS	N-EN 1092-1 (4/2002)
Type of plug			V-ported, parabolic, perforated	
Flow characteris	tic	Linear, e	equal-percentage, LDMspline®, p	oarabolic
Kvs value			1.6 to 360 m³/hour	
Leakage rate		Class III. acc. to ČSN-EN 1349	(5/2001) (<0.1% Kvs) for c. valve	es with metal-metal seat sealing
		Class IV. acc. to ČSN-EN 1349	(5/2001) (<0.01% Kvs) for c. valv	es with metal-PTFE seat sealing
Rangeability r			50 : 1	
Packing		O - ring EPDM t _{max} =140°C, DF	RSpack [®] (PTFE) t _{max} =260°C, Exp	o. graphite, bellows t _{max} =500°C

Remark: For low operating temperatures (-200 to +250°C), it is possible to supply the valve RV 232 with body material made of 1.4308 (cast stainless steel).

Kvs and differential pressure values with electromechanic actuators

 Δ p_{max}value is the valve max. differential pressure when open-close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that permanent

differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

		Actuati	ing (actu	iator)		7810 k-12	RA-3xx	x-712x	FA-10x	x-210x	RA-3xx	x-722x	FA-22x FA-25x		RA-3xx	x-732x	FA-33x	x-741x
		Mark in	valve s	pec. No	E	CN	E	CI	Н	CJ	E	CI	E	CK	E	CI	EC)L
		Linear f	orce			00 N 0%	100	0 N	700	0 N	180	0 N	230	0 N	300	0 N	600	0 N
		K۱	/s [m³/ho	our]	Δι	O _{max}	Δβ	O _{max}	Δβ	O _{max}	Δβ) _{max}	Δι	O _{max}	Δp) max	Δŗ) _{max}
DN	Н	1	2	3	metal	PTFE	metal	PTFE	metal	PTFE	metal	PTFE	metal	PTFE	metal I	PTFE	metal	PTFE
15			2.5 1)	1.61)	1.79		4.00		0.65									
15		4.01)			0.75		1.92		0.16									
20				2.51)	1.79		4.00		0.65									
20	13		4.0 1)		0.75		1.92		0.16									
20	13	6.31)			0.23		0.82											
25		10.0	6.3 ²⁾	4.0 2)	0.05	0.46	0.42	0.83		0.28								
32		16.0	10.0	6.32)		0.27	0.17	0.49		0.16								
40		25.0	16.0	10.0		0.17	0.06	0.31		0.10								
50	25	40.0	25.0	16.0							0.33	0.52	0.54	0.74				
65	23	63.0	40.0	25.0							0.16	0.32	0.29	0.45				
80		100.0	63.0	40.0											0.19	0.32	0.73	0.86
100	42	160.0	100.0	63.0											0.10	0.21	0.45	0.56
125	42	250.0	160.0	100.0											0.05	0.13	0.27	0.36
150		360.0	250.0	160.0											0.02	0.09	0.18	0.25

Kvs and differential pressure values with pneumatic actuators

 Δ p_{max}value is the valve max. differential pressure when open-close function is always guaranteed. In regard of service life of seat and plug, it is recommended so that permanent

differential pressure would not exceed 1.6 MPa. Otherwise it is suitable to use perforated plug or sealing surfaces of seat and plug with a hard metal overlay.

		, ,					•													
For furth		Pneuma	atic actu	ator		MP	8000							PA 2	2000					
on actua		Spec. N	lo. of ac	tautor	MP822	Exx20	MP832	Exx20	PA-2xx	x-3317	PA-2xx	x-3327	PA-2xx	x-3717	PA-2xx	x-3727	PA-2xx	x-3617	PA-2xx	x-3627
see actu		Actuato	r functio	ı	fail to	open	fail to	close	fail to	open	fail to	close	fail to	open	fail to	close	fail to	open	fail to	close
uala Sile	eels	Spring r	ange	[bar]	0,6 -	- 0,9	0,6 -	- 0,9	0,7	- 1,0	0,7 -	- 1,0	0,7 -	- 1,0	0,7 -	- 1,0	0,7 -	- 1,0	0,7 -	1,0
		Spring s	setting	[bar]	0.	,6	0	,6	0	,7	0	,7	0,	7	0,	,7	0,	7	0,	7
		Feeding	pressur	e [bar]	1.	6	1.	1	1.	6		,2	1,	6		,2	1,	6	1,	
			valve sp			P	CA								СВ	<u> </u>				
		Linear f	orce		112	0 N	960) N	180	0 N	210	0 N	360	0 N	420	0 N	360	0 N	420	0 N
		Kv	Kvs [m³/hour]			O _{max}	Δŗ) _{max}	Δι	O _{max}	Δβ	O _{max}	Δŗ) _{max}	Δŗ	O _{max}	Δŗ) _{max}	Δp) _{max}
DN	Н	1	2	3	metal	PTFE	metal	PTFE			metal		metal	PTFE					metal	
15			2.5 1)	1.61)	4.00		3.61													
15		4.01)			2.63		1.69													
20				2.51)	4.00		3.61													
20	40		4.0 1)		2.63		1.69													
20	13	6.31)			1.17		0.70													
25		10.0	6.3 ²⁾	4.0 2)	0.63	1.05	0.34	0.75												
32		16.0	10.0	6.32)	0.31	0.63	0.13	0.45												
40		25.0	16.0	10.0	0.14	0.40	0.03	0.28												
50	25	40.0	25.0	16.0					0.33	0.52	0.46	0.65	1.10	1.29	1.35	1.54				
65	25	63.0	40.0	25.0					0.16	0.32	0.24	0.39	0.63	0.78	0.79	0.94				
80		100.0	63.0	40.0													0.30	0.43	0.41	0.54
100	40	160.0	100.0	63.0													0.17	0.28	0.24	0.35
125	42	250.0	160.0	100.0													0.09	0.18	0.14	0.22
150		360.0	250.0	160.0													0.05	0.12	0.08	0.16

¹⁾ parabolic plug in straight way, V-ported plug in angle way

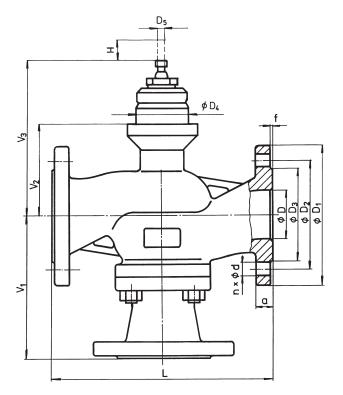
Bellows packing can be used with V-ported plug only.

Max. differential pressure Δ p for valves PN 16 must be 1.6 MPa.

metal - version with metal - metal seat sealing

PTFE - version with metal - PTFE seat sealing

Max. differential pressures specified in table apply to PTFE and O-ring packing. $\Delta p_{\mbox{\tiny max}}$ for bellows must be consulted with the producer.


It applies to graphite packing as well especially when required Δ p value is close to max. values specified in table.

V-ported plug in angle way, in straight way for linear characteristic V-ported plug and for equal-percentage characteristic parabolic plug.

Dimensions and weight for the type RV 2x4

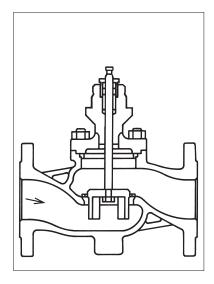
	PN 16 PN 40				PN 16, PN 40																			
DN	D ₁	D ₂	D ₃	d	n	D ₁	D ₂	D ₃	d	n	D	f	D ₄	D ₅	L	V ₁	V_{2}	$^{*}V_{_{2}}$	V_3	$^{*}V_{_{3}}$	а	m ₁	m ₂	#m _v
	mm	mm	mm	mm		mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
15	95	65	45			95	65	45			15				130	110	98		156		16	5.5	6	
20	105	75	58	14		105	75	58	14		20				150	115	98		156		18	6.5	7	
25	115	85	68			115	85	68		4	25				160	130	103	238	161	296	18	8.3	9.5	3.5
32	140	100	78		4	140	100	78		4	32			12	180	135	103	238	161	296	20	10.5	12	3.5
40	150	110	88			150	110	88			40				200	140	103	238	161	296	20	12	13.5	3.5
50	165	125	102			165	125	102	18		50	2	54		230	175	110	298	176	364	20	17	24	4
65	185	145	122	18	41)	185	145	122			65				290	180	110	298	176	364	22	22	31	4
80	200	160	138			200	160	138			80				310	220	123	440	189	506	24	31	43	4.5
100	220	180	158		8	235	190	162	22	8	100			13.8	350	230	123	440	189	506	24	44	55	4.5
125	250	210	188		0	270	220	188	26		125			13.0	400	260	151	468	217	534	26	65	90	5
150	285	240	212	22		300	250	218	20		150				480	290	151	468	217	534	28	94	120	5

- with regard of the standard previously in force, there is an option to have the number of connection bolts as stipulated in ČSN-EN 1092-1

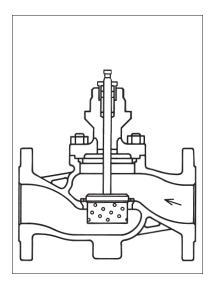
 for valve with bellows packing m_v weight to be added to weight of valve equipped with bellows packing m₁ for valves RV 214 m₂ for valves RV 224 and RV 234

Valve complete specification No. for ordering RV 2x0, RV / HU 2x1, RV 2x2, RV 2x4

1.	Valve	Control valve		XX RV	XXX	XXX	XXXX	XX	- XX	/ XXX	- XXX
••	· •	Fail-safe action valve		HU						+ +	1
2	Series	Valves made of spheroidal cas	st iron		2 1					+ +	+
۷.	Ceries	Valves made of cast steel	31 11011		22					+	+
		Valves made of stainless stee	ı		23					+ +	
		Direct valve	ı		0					+	-
		Reverse valve			1					++	
		Pressure-balanced, direct valve	·		2					+	+
			/e							+	-
	A	Mixing (diverting) valve			4	_				++	-
3.	Actuating	Electric actuator				E				++	
	$t_{max} = 140^{\circ}C$	Pneumatic actuator				P				+	
	5) Fail-safe action actuators	Electrohydraulic actuator	100			Н				++	
		Electric actuator VA-7810-xxx				ECN					
		Electric actuator RA-3xxx-7xx				ECI					
		Electrohydraulic actuator FA-1				HCJ					
		Electric actuator FA-2xxx-7x1x	X			ECK					
		Electric actuator FA-33xx-741	X			ECL					
		Pneumatic actuator MP 8000				PCA					
		Pneumatic actuator PA 2000				РСВ					
4.	Connection	Raised flange					1				
		Female flange					2				
5.	Body material		(-20 to 400°C)				1				
			(-20 to 300°C)				4				1
	(operating temperature ranges	<u> </u>	(-20 to 500°C)				7			+ +	
	are specified in parentheses)		(-20 to 400°C)				8				
	are specified in parentificació	Other material on request	(20 10 100 0)				9			+	1
-6	Seat sealing	Metal - metal					1			+	
0.	²⁾ od DN 25; $t_{max} = 260^{\circ}C$	Soft sealing (metal - PTFE) in s	traight way ²⁾				2			+ +	-
	00 DIV 25, t _{max} – 200 C	Hard metal overlay on sealing s					3			+	-
	Dooking		suriaces				1			++	+
1.	Packing	O - ring EPDM								+	
	3) Not applicable to RV 2x2	DRSpack® (PTFE)					3			++	
		Graphite ³⁾					5			+	
		Bellows					7			+	
		Bellows with safety PTFE packing	ing				8			++	
		Bellows with Graphite packing 3)					9			\perp	
8.	Flow characteristic	Linear						L		\perp	
	4) Not applicable to RV 2x4	Equal-percentage						R			
		LDMspline ^{® 4)}						S			
		Parabolic 4)						Р			
		Linear - perforated plug 4)						D			
		Equal-percentage - perforated	l plug 4)					Q			
		Parabolic - perforated plug 4)						Z			
9.	Kvs	Column No. acc. to Kvs value	s table					Х			
10.	Nominal pressure PN	PN 16							16		
	process proces	PN 40							40		
11.	Max. operating temp. °C	O - ring EPDM								140	+
	operating terripi	DRSpack® (PTFE), bellows								220	+
		DRSpack® (PTFE), bellows							+	260	+
		Graphite; bellows 3)							+	300	+
		Graphite; bellows 3								400	+
		Graphite; bellows 3)							+ +		+
		Graprille, bellows								550	XXX

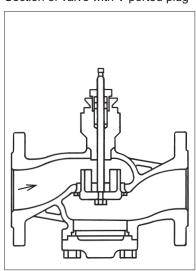

Ordering example:

Two-way control valve DN 65, PN 40, with electric actuator RA-3105-7227, body material: spheroidal cast iron,flange, with raised face, metal-PTFE seat sealing, packing PTFE, linear flow characteristic, Kvs = $63\,\mathrm{m}$ /hour is specified as follows: RV 210 ECI 1423 L1 40/220-65

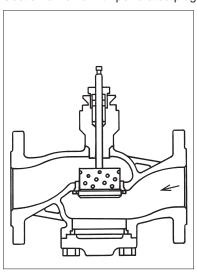


Valves RV 2x0

Section of valve with V-ported plug

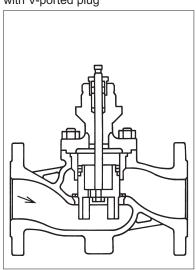


Section of valve with perforated plug

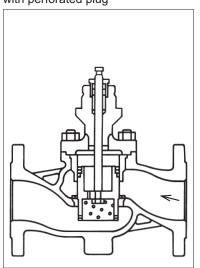


Valves RV / HU 2x1

Section of valve with V-ported plug

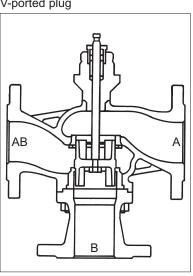


Section of valve with perforated plug



Valves RV 2x2

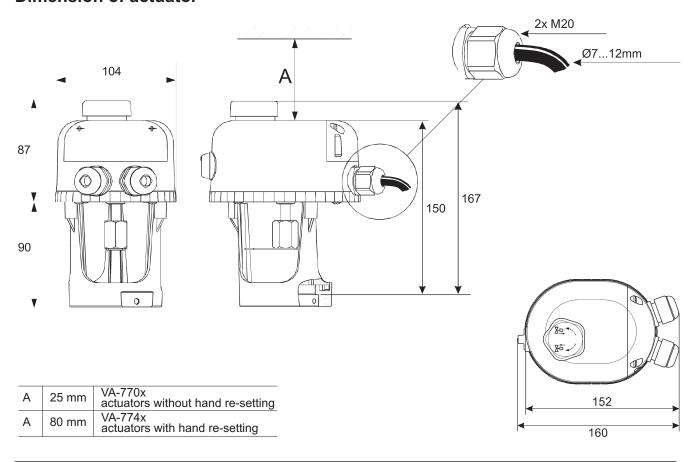
Section of pressure-balanced valve with V-ported plug



Section of pressure-balanced valve with perforated plug

Valves RV 2x4

Section of three-way valve with V-ported plug

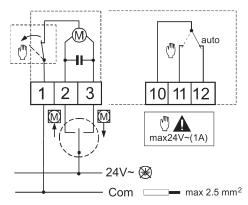

ECM

Electric actuator VA-77xx-100x Johnson Controls

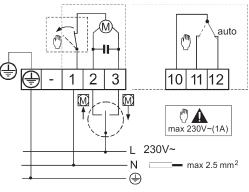
Technical data

Туре	VA-77xx-100x
Marking in valve specification No.	ECM
Voltage	24 V AC, 230 V AC
Frequency	50 / 60 Hz
Power consumption	2,4 VA
Control	3 - position, 0 - 10 V, 0 (4) - 20mA
Open-close running time	6 mm/min (for 50 Hz)
Nominal force	500 N ± 20%
Travel	max. 20 mm
Enclosure	IP 54
Process medium max. temperature	140°C
Ambient temperature range	-5 to 55℃
Ambient humidity limit	10 - 90% of relative humidity, without condensation
Weight	0,8 kg

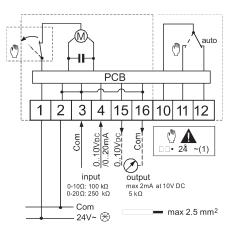
Dimension of actuator



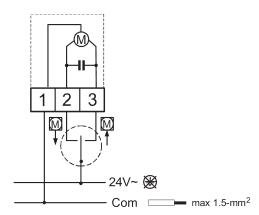
Specification of actuators VA-715x-100x


		VA - 77 X	X	-	1	0 0	X
I I a sa al coda a a I	Reversible, without feedback	0					
Hand wheel	Proportional control with signal 0 - 10 V	4					
0 1 1	3 - position		0				
Control	Proportional 0-10 V / 0 (4) - 20 mA		6				
Voltage	24 V						1
voitage	230 V (just 3-position models)						3

Wiring diagrams of actuators

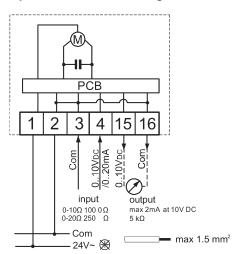

(Models with mechanical hand re-setting)

VA-7740-1001 3-positions models, voltage 24 V



VA-7740-1003 3-positions models, voltage 230 V

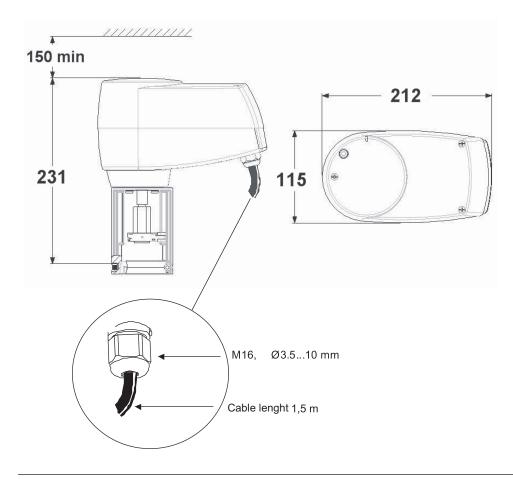
VA-7746-1001 Proportional models, voltage 24 V


(Models without mechanical hand re-setting)

VA-7700-1001 3-positions models, voltage 24 V

3-positions models, voltage 230 V

VA-7706-1001 Proportional models, voltage 24 V

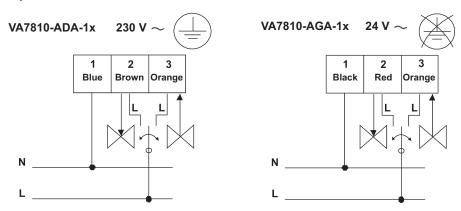

ECN

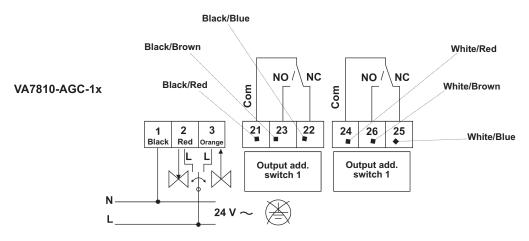
Electric actuators VA-7810-xxx-1x of Johnson Controls

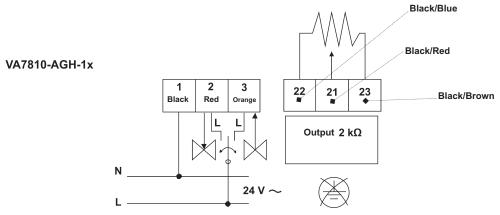
Technical data

Туре	VA-7810-xxx-1x
Mark in valve specification No.	ECN
Voltage	24 V AC or 230 V AC
Frequency	50 / 60 Hz
Motor power	max. 8 VA
Control	3-position or 0 (2) - 10 V, 0 (4) - 20 mA
Open-close running time	10 mm / min.
Nominal force	1000 N ± 20 %
Stroke	max. 25 mm
Enclosure	IP 54
Process medium max. temperature	140°C
Ambient temperature range	-5 to 55°C
Ambient humidity limit	10 - 90 % of relative humidity, without condensation
Weight	1,7 kg

Dimensions of actuator

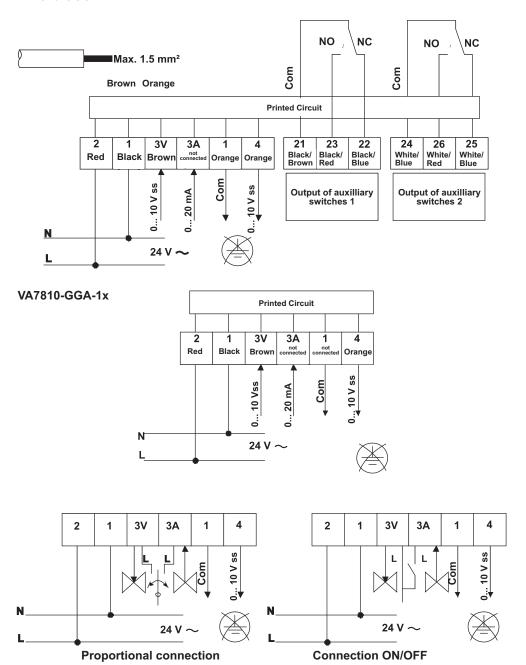

Specification of actuators VA-715x-100x


	VA - 7810	- X X X	- X X
	230 V AC	ADA	
3-position	24 V AC	AGA	
models	24 V AC, 2 additional switches	AGC	
	24 V AC, feedback potenciometer 2 kΩ	AGH	
Proportional	24 V AC, 0 (2) - 10 V nebo 0 (4) - 20 mA	GGA	
models	24 V AC, 0 (2) - 10 V nebo 0 (4) - 20 mA, 2 additional switches	GGC	
Connection for	Thread coupling (RV 102, RV 103)		11
the actuator type	Clamp coupling (200 line)		12


Wiring diagrams of actuators

The actuators are delivered with the cable gland (lenght 1,5 m). The cable number name according to clamps marking of the actuator.

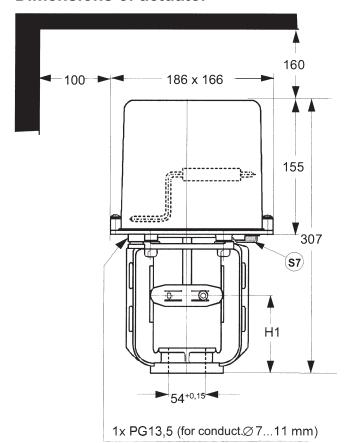
3-position models



The actuators are delivered with the cable gland (lenght 1,5 m). The cable number name according to clamps marking of the actuator.

Proportional models

VA7810-GGC-1x



Electric actuators RA-3xxx-7xxx of Johnson Controls

Technical data

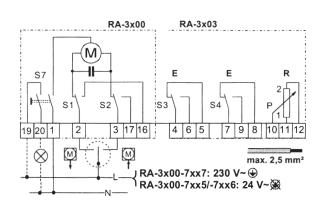
Туре	RA-3xxx-712x	RA-3xxx-722x	RA-3xxx-732x				
Mark in valve specification No.		ECI					
Voltage		24V or 230 V					
Frequency		50 / 60 Hz					
Motor power	7 VA, with positioner 9 VA	10 VA, with positioner 12 VA	16 VA, with positioner 18 VA				
Control		3 - position or with signal of	0 - 10 V				
Open-close run time at 50(60)Hz	9,6 (11,5) mm/min	14,4 (17,2) mm/min	13,6 (16,3) mm/min				
Nominal force	1000 N	1800 N	3000 N				
Stroke	13 mm	25 mm	42 mm				
Enclosure		IP 54					
Max. operating temperature	Acc. to used valve						
Ambient temperature range	-10 to 60°C (control 0 - 10 V -10 to 50°C)						
Ambient humidity limit	90 % without condensation						
Weight	4,2 kg	4,2 kg	4,4 kg				

Dimensions of actuator

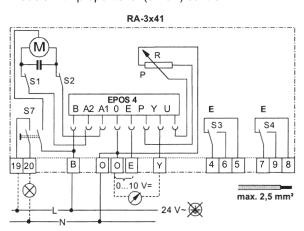
	H1
RA-3xxx-712x	58 mm
RA-3xxx-722x	66 mm
RA-3xxx-732x	66 mm

+1 Blind socket

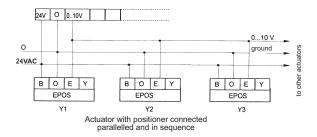
Specification of actuators series RA-3xxx-7xxx


	RA-3	3 X	ΧX	7	XXX
Hand wheel	none	0			
	with hand wheel	1			
Accessories	none		0 0		
(factory mounted)	2 auxiliary switches and feedback potentiometer 2 k Ω		0 3		
	2 auxiliary switches and feedback potentiometer 135 k Ω		0 5		
	Built-in electronic positioner 0-10 VDC and two additional switches (for 24 V models only)	4 1		
Actuator's force	1000 N 24 VAC, 50/60 Hz			Ш	126
and voltage	1000 N 230 VAC, 50/60 Hz			Ш	127
	1800 N 24 VAC, 50/60 Hz			Ш	226
	1800 N 230 VAC, 50/60 Hz				227
	3000 N 24 VAC, 60 Hz				3 2 5
	3000 N 24 VAC, 50 Hz				3 2 6
	3000 N 230 VAC, 50 Hz				3 2 7

Accessories

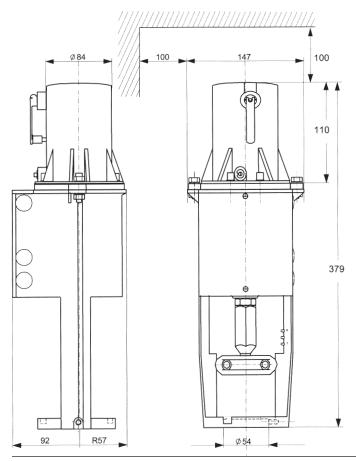

EQ-5687-7011	2 auxiliary switches and feedback potentiometer 2 k Ω
252 3501 114	lead-in insulator PG 13,5 (Ø 711 mm) DIN 46320 - FS

Wiring diagrams


Models with floating (3-position) control (PAT)

Models with proportional (0-10V) control

Actuators (24 V models only) with built-in positioner for regulators with output of 0 -10 V



Elektrohydraulic actuators FA-10xx-210x of Johnson Controls

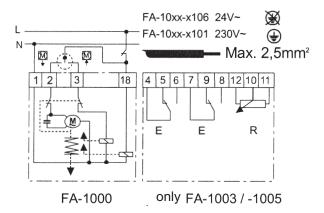
Technical data

Тур	FA-10xx-210x
Marking in valve specification No.	ECJ
Voltage	24 V or 230 V
Frequency	50 / 60 Hz
Power consumption	20 VA, with direct control 23 VA
Control	3 - position control or with signal 0 10 V / 0 20 mA
Open-close running time	6,5 mm/min
Fail-safe action time	20 ± 10 s
Nominal force	700 N
Travel	13 mm
Enclosure	IP 54
Process medium max. temper.	Acc. to used valve
Ambient temperature range	-5 to 50°C
Ambient humidity limit	95 % without condensation
Weight	3,5 kg

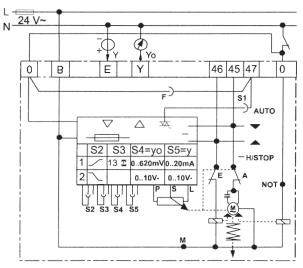
Dimension of actuator

Specification actuators series FA-10xx-210x

		FA-10 X X - 210 X
Accessories	none	0 0
(factory mounted)	2 auxiliary switches and feedback potentiometer 2 k Ω	0 3
	2 auxiliary switches and feedback potentiometer 130 k Ω	0.5
	Built-in electronic positioner 0 10 V / 0 20 mA (for 24 Vmodels only)	4 0
Voltage	230 VAC, 50/60 Hz	
· ·	24 VAC, 50/60 Hz	6


Accessories

111 6133 010	2 signalisation switches (not available for models with 0 10 V control)
111 6134 010	feedback potentiometer 2 k Ω (not available for models with 0 10 V control)
111 6135 010	feedback potentiometer 130 k Ω (not available for models with 0 10 V control)
282 3501 113	PG 11 x 7 9 mm bolt
111 6142 010	* 24V hydraulic unit (spare part)
111 6142 020	* 230V hydraulic unit (spare part)

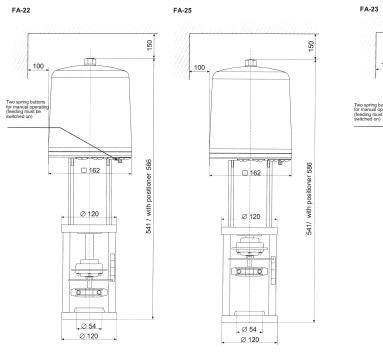

^{*} hydraulic pump and motor

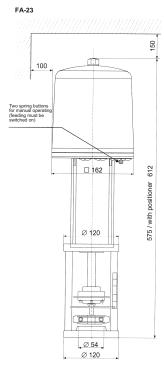
Wiring diagrams

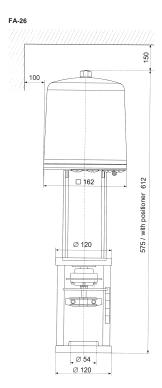
Models with floating (3-position) control (PAT)

Models with proportional (0-10V) control

FA-1040


ECK


Electric actuator FA-2xxx-7x1x Johnson Controls

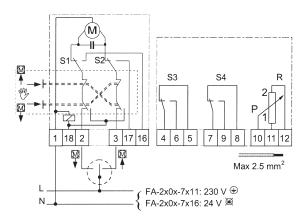

Technical data

Тур	FA-22xx-751x	FA-25xx-751x	FA-23xx-741x	FA-26xx-741x	
Marking in valve specification No.	ECK				
Voltage	24 V or 230 V				
Frequency		50	Hz		
Power consumption		24 V = 6,1 VA	: 230 V = 5 VA		
Control	3 - p	osition control or with	signal 0 10 V / 0 2	0 mA	
Open-close running time	17,5 mm/min				
Nominal force	240	00 N	220	00 N	
Travel	25 mm 42 mm			mm	
Enclosure		IP	54		
Process medium max. temper.	Acc. to used valve				
Ambient temperature range	-20 to 60°C				
Ambient humidity limit		90 % without	condensation		
Weight	9,4	ł kg	9,8	kg	

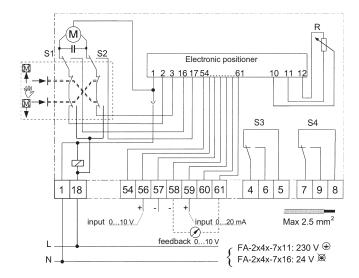
Dimension of actuator

Specification of actuators series FA-2xxx-7x1x

		FA-2 X	X X - 7>	<1 X
Return spring	Safety position :stem fully extended	2	7.5	-1
	Safety position :stem fully retracted	5		'
	Safety position :stem fully extended	3	74	11
	Safety position :stem fully retracted	6		<i>F</i> 1
Accessories	none		0 0	
(factory mounted)	2 auxiliary switches		0 1	
	Feedback potentiometer 2 k Ω		0 2	
	2 auxiliary switches and feedback potentiometer 2 k Ω		0 3	
	Feedback potentiometer 135 k Ω		0 4	
	Built-in electronic positioner 0 10 V / 0 20 mA (for 24 V models only)		4 0	
	2 auxiliary switches, built-in electronic positioner 0 10 V / 0 20 mA		4 1	
Voltage	230 V, 50 Hz			1
-	24 V, 50 Hz			6


Accessories

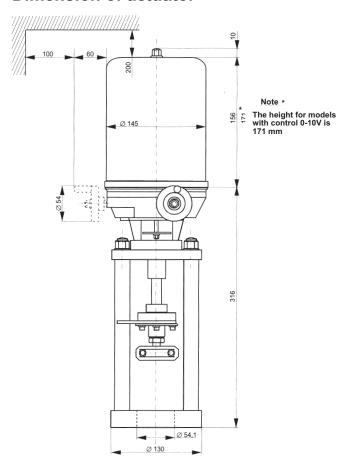
EQ-1008-7101		2 signalisation switches
EQ-1007-7101		spare printed circuit for actuator
EQ-1009-7101	10	Position indicator, feedback 2 kΩ (not available for models with control 0 10 V)
EQ-1029-7101	4-22 'A-2!	Position indicator, feedback 135 kΩ (not available for models with control 0 10 V)
EQ-1010-7101	for FA-22 and FA-25	* Potentiometer 2 k Ω (not available for models with control 0 10 V)
EQ-1030-7101 * *		* Potentiometer 135 kΩ (not available for models with control 0 10 V)
EQ-1016-7101	9	Position indicator, feedback 2 kΩ (not available for models with control 0 10 V)
EQ-1017-7101	FA-23 I FA-26	Position indicator, feedback 135 kΩ vysílač (not available for models with control 0 10 V)
EQ-1018-7101	for Fy and F	* Potentiometer 2 k Ω (not available for models with control 0 10 V)
EQ-1019-7101	<i>→ w</i>	* Potentiometer 135 kΩ (not available for models with control 0 10 V)


^{*} models with position indicator have potentiometer installed as standard

Wiring diagrams

Models with floating (3-position) control (PAT) FA-2x0x-7x1x

Models with proportional (0-10V) control FA-2x4x-7x1x



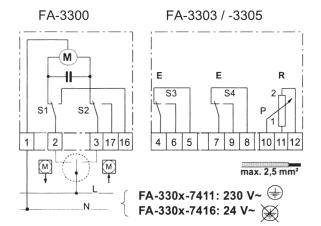
Electric actuator FA-33xx-741x Johnson Controls

Technical data

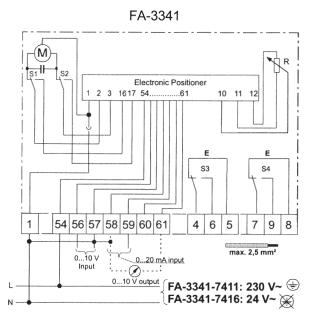
Туре	FA-33xx-741x
Marking in valve specification number	ECL
Feeding pressure	24 V or 230 V
Frequency	50 Hz
Power consumption	37 VA (42 VA with positioner)
Control	3 - position control or with signal 0 - 10 V
Open-close running time	17 mm/min
Nominal force	6000 N + 300 N
Travel	42 mm; max. 45 mm
Enclosure	IP 65
Process medium max. temperature	Acc. to used valve
Ambient temperature range	-20 to 60°C
Ambient humidity range	90 % without condensation
Weight	7,5 kg

Dimension of actuator

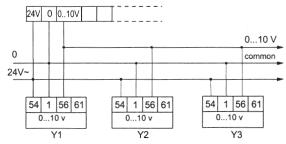
Specification of actuators series FA-33xx-741x


		FA-33	⟨X -	741	X
Accessories	none	(0 0		
(factory mounted)	2 auxiliary switches and feedback potentiometer 2 kΩ	(3		
	Feedback potentiometer 135 kΩ	() 4		
	Built-in electronic positioner 0 10 V / 0 20 mA and 2 auxiliary switches		1 1		
Voltage	230 VAC, 50 Hz				1
-	24 VAC, 50 Hz				6

Accessories


EQ-1003-7101	2 auxiliary switches and feedback potentiometer 2 k Ω		
EQ-1013-7101	Feedback potentiometer 135 k Ω		
EQ-1015-7101	Electronic positioner 0 10 V or 0 20 mA, telescopic modul for change at place (spare part)		

Wiring diagram


Floating (3-position) control (PAT)

Proportional (0-10V) control

Actuators with built-in positioner for regulator with feedback 0-10 V

Actuator with positioner connected parallelled and in sequence operation

PCA

Pneumatic actuators MP-8000 Johnson Controls

Technical data

Туре	MP 8x 2xxx20
Marking in valve specification number	PCA
Feeding pressure	max. 1,6 bar
Function	direct or indirect
Control	ON - OFF
	Pneumatic signal 20 - 100 kPa (with positioner PY-1010)
Nominal force	960 - 1760 N (acc. type)
Travel	13 mm
Process medium max. temperature	Acc. to used valve
Ambient temperature range	-4 to 80°C
Ambient humidity range	5 - 100 %
Weight	5 kg (6kg with positioner)

Accessories

Pneumatic positioner (corector) (type PY-1010)	serves for adjusting of required stroke value with the aid of
	pneumatic signal 20 to 100kPa
Signalisation switches	adjustable end position switches
Position transmitter	resistance output signal (0 - 2 kΩ)
Manual operating	for fail to open (NO) or fail to close function (NC) of actuator

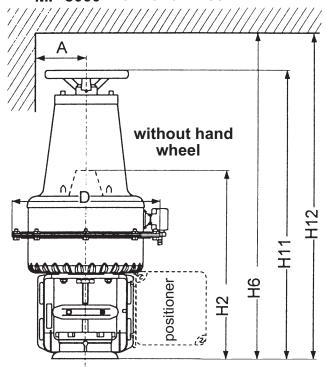
Operating conditions

Pneumatic actuators can be installed in open atmosphere. They can operate in explosive environment acc. to class SNV1 to SNV3. If there is any additional electric equipment used in actuator, then its application in environment SNV is limited by this additional equipment.

Direct and indirect functions

Direct function ensures that actuator stem (draw bar) retracts upon air supply failure (valve opens).

Indirect function ensures that actuator stem (draw bar) extends upon air supply failure (valve closes).



Specification of actuators series MP-8000

	M	P8	(2	2 X	X	X	20
Function, size	D.A., diaphragm 160 cm ² (air to close, fail to open)	2	2			П	
	R.A., diaphragm 160 cm ² (air to open, fail to close)	3	3				
Spring range	20 50 kPa			С			
	60 90 kPa			Е			
Accessories	none		Τ		5		
feedback and switches	positioner D.A., PY-1010				6		
	positioner D.A., PY-1010 with hand wheel		Τ		7		
	hand wheel				8		
Accessories	none					0	
positioner and hand wheel	feedback 2 k Ω					1	
	feedback 2 kΩ and 2 auxiliary switches		Τ			2	
	2 auxiliary switches		Τ			3	

Dimensions of actuator series MP-8000

MP-8000 with hand wheel

DN	Α	D	H2	H2 H6 H11		H12
15 - 40	160	220	264	414	394	544

Pneumatic actuators PA-2000 Johnson Controls

Technical data

Туре	PA-2xxx-3xxx	
Marking in valve specification No.	PCB	
Feeding pressure	max. 1,6 bar	
Function	direct or indirect	
Control	ON - OFF	
	Pneumatic signal 20 - 100 kPa (with positioner PY-1010)	
Nominal force	1800 - 6600 N (acc. type)	
Travel	25, 42 mm	
Process medium max. temperature	Acc. to used valve	
Ambient temperature range	-30 to 80°C	
Ambient humidity range 5 - 100 %		
Weight	actuator with diaphragm 300 cm ² - 6 kg (7kg with positioner)	
	pohon s membránou 600 cm² - 17 kg (18kg with positioner)	

Accessories

Pneumatic positioner (corector) (type PY-1010)	serves for adjusting of required stroke value with the aid of pneumatic signal 20 to 100kPa
Signalisation switches	adjustable end position switches
Position transmitter	resistance output signal (0 - 2000 Ω)
Manual operating	for fail to open (NO) or fail to close function (NC) of actuator

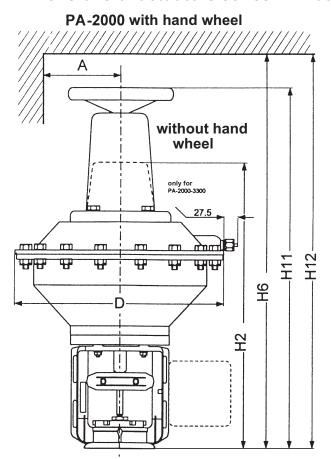
Service conditions

Pneumatic actuators can be installed in open spaces. The can operate in explosive environment.

Direct and indirect functions

Direct function ensures that actuator stem (draw bar) retracts

upon air supply failure (valve opens).


Indirect function ensures that actuator stem (draw bar) retracts upon air supply failure (valve closes).

Specification of actuators series PA-2000

		PA-2 X	(X	X	- 3 2	X)	(X
Manual operating	none	С) 🗌		П	\top	T
	with hand wheel	1					
Positioner	none		0				
factory mounted	DA type (PY-1010)		3				
Accessories	none			0			
feedback and switches	2 auxiliary switches			1			
	Feedback 2 kΩ			2			
	Feedback 2 kΩ and 2 auxiliary switches			3			
Size	300 cm ² , standard for DN0 50 and 65				1	3	
	600 cm ² , standard for DN 80to150		П		-	6	
	600 cm ² , large size actuator for DN 50 and 65				1	7	
Function, size	D.A Air to close, fail to open					1	
	R.A Air to open (reverse), fail to close				П	2	2
Spring range	20 50 kPa						2
	70 100 kPa					\top	7

Dimensions of actuators series PA-2000

PA-2000-3300

DN	Α	D	H2	H6	H11	H12	
50 a 65	200	290	378	528	492	642	

PA-2000-3600 and PA-2000-3700

DN	Α	D	H2	H6	H11	H12
50 - 150	250	384	508	708	666	866

Maximal permissible operating pressures [MPa]

Material	PN	Temperature [°C]										
		120	150	200	250	300	350	400	450	500	525	550
Brass	16	1,60	1,14									
42 3135		-										
Grey cast iron EN-JL 1040	16	1,60	1,44									
(EN-GJL-250)												
Spheroi. c. iron EN-JS 1025	16	1,50	1,40	1,40	1,30	1,10						
(EN-GJS-400-18-LT)	40	4,00	3,88	3,60	3,48	3,20						
Cast steel 1.0619	16	1,60	1,50	1,40	1,30	1,10	1,00	0,80				
(GP240GH)	40	4,00	4,00	3,90	3,60	3,20	2,70	1,90				
CrMoV steel												
1.7357 (G17CrMo5-5)	40	4,00	4,00	4,00	4,00	4,00	4,00	3,90	3,10	1,80		
Stainless cast steel 1.4581	16	1,60	1,50	1,40	1,30	1,30	1,20	1,20				
(GX5CrNiMoNb19-11-2)	40	4,00	3,80	3,50	3,40	3,30	3,10	3,00				

LDM, spol. s r.o. Litomyšlská 1378 560 02 Česká Třebová Czech Republic

tel.: +420 465 502 511 fax: +420 465 533 101 E-mail: sale@ldm.cz http://www.ldm.cz LDM, spol. s r.o. Büro Prague Tiskařská 10 108 28 Praha 10 - Malešice Czech Republic

tel.: +420 234 054 190 fax: +420 234 054 189

LDM, spol. s r.o. Büro Ústí nad Labem Mezní 4 400 11 Ústí nad Labem Czech Republic

tel.: +420 475 650 260 fax: +420 475 650 263

LDM servis, spol. s r.o. Litomyšlská 1378 560 02 Česká Třebová Czech Republic

tel.: +420 465 502 411-3 fax: +420 465 531 010 E-mail: servis@ldm.cz

LDM, Polska Sp. z o.o. Modelarska 12 40 142 Katowice Poland

tel.: +48 32 730 56 33 fax: +48 32 730 52 33 mobile: +48 601 354999

E-mail:

ldmpolska@ldm.cz

LDM Bratislava s.r.o. Mierová 151 821 05 Bratislava Slovakia

tel.: +421 2 43415027-8 fax: +421 2 43415029 E-mail: ldm@ldm.sk http://www.ldm.sk LDM - Bulgaria - OOD z. k. Mladost 1 bl. 42, floor 12, app. 57 1784 Sofia Bulgaria

tel.: +359 2 9746311 fax: +359 2 9746311 GSM: +359 88 925766 E-mail: ldm.bg@mbox.cit.bg OAO "LDM" Chernyakhovskogo str., build. 4 125319 Moskau Russian Federation

tel.: +7 095 7973037 fax: +7 095 7973037

E-mail: inforus@ldmvalves.com

LDM Armaturen GmbH Wupperweg 21 D-51789 Lindlar Germany

tel.: +49 2266 440333 fax: +49 2266 440372 mobile: +49 177 2960469

E-mail: Idmarmaturen@Idmvalves.com

http://www.ldmvalves.com

Your partner

LDM reserves the right to modify or improve the designs or specifications of such products at any time without notice.